Traitement d'un signal. Étude Spectral

Bauduin Anatole

<u>PLAN</u>

Niveau: cycle universitaire

Pré-requis:

- bases d'électrocinétique,
- résolution d'équations différentielles,
- notation complexe

I. Analyse fréquentielle

- 1. Équations différentielles linéaires et fonction de transfert
- 2. Représentation fréquentielle : série de Fourier
- 3. Outil numérique : exemple d'un signal créneau

II. Filtrage linéaire

- 1. Définitions
- 2. Diagrammes de Bode
- 3. Différents types de filtres

III. Modulation d'Amplitude

- 1. Principe et définitions
- 2. Spectre du signal modulé
- 3. Démodulation

INTRODUCTION

- Expression de i(t) et $u(t) \Rightarrow$ équation différentielles décrivant le système considéré
- Évolution temporelle des grandeurs, exemple : charge d'un condensateur
- Réponse à une entrée
- Traitement de l'information?

I. ANALYSE FRÉQUENTIELLE

I.1. <u>ÉQUATIONS DIFFÉRENTIELLES ET FONCTION DE</u> TRANSFERT

- De façon générale, pour un système linéaire dont les caractéristiques de ses composants sont indépendantes du temps, on peut exprimer une équation différentielle du type :

$$a_0 s(t) + \sum_{k=1}^n a_k rac{d^k s(t)}{dt^k} = b_0 e(t) + \sum_{k=1}^m b_k rac{d^k e(t)}{dt^k}$$

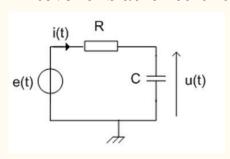
Avec:

s(t), la sortie du système,

e(t), l'entrée,

a_k et b_k des coefficients constants

- Revenons au circuit RC:



$$\left[rac{du(t)}{dt} + rac{1}{RC}u(t) = rac{1}{RC}e(t)
ight]$$

Avec:

u(t), la tension au bornes de C,

e(t), l'entrée, la tension de forçage

I.1. <u>ÉQUATIONS DIFFÉRENTIELLES ET FONCTION DE</u> TRANSFERT

- On néglige le régime transitoire pour ne s'intéresser qu'au régime sinusoïdal forcé

$$ightarrow$$
 Notation complexe : $ilde{e}(t)=Ee^{j(\omega t+\phi)}$ où ω est la pulsation de forçage $ilde{s}(t)=Se^{j(\omega t+\phi)}$

- Fonction de transfert $H(\omega)$: rapport entre le signal de sortie et le signal d'entrée tel que,

$$H(\omega) = rac{ ilde{s}(t)}{ ilde{e}(t)}
ightarrow H(\omega) = rac{b_0 + \sum_{k=1}^m b_k(j\omega)^k}{a_0 + \sum_{k=1}^n a_k(j\omega)^k}
ightarrow ext{Caract\'erise enti\`erement la r\'eponse du syst\`eme pour un forçage de pulsation donn\'ee!}$$

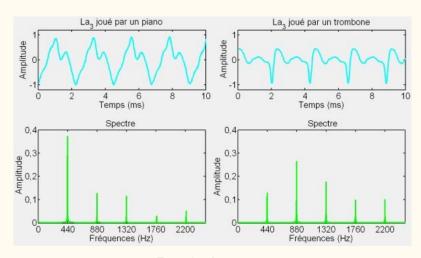
- Cas du RC : $(j\omega)\tilde{u} + \frac{1}{RC}\tilde{u} = \frac{1}{RC}\tilde{e}$ et donc $H_{RC}(\omega) = \frac{\underline{U}}{\underline{E}} = \frac{1}{1+jRC\omega}$

I.2. REPRÉSENTATION FRÉQUENTIELLE : SÉRIE DE FOURIER

Objectif : décomposer n'importe quel signal périodique comme une somme de cosinus et de sinus pour exploiter la linéarité des équations différentielles

- Soit le signal s(t), alors :

$$egin{aligned} s(t) &= a_0 + \sum_{n=1}^{+\infty} [a_n cos(n\omega t) + b_n sin(n\omega t)] \ a_0 &= rac{1}{T} \int_0^T s(t) dt \ a_n &= rac{2}{T} \int_0^T s(t) cos(n\omega t) dt \ b_n &= rac{2}{T} \int_0^T s(t) sin(n\omega t) dt \end{aligned}$$

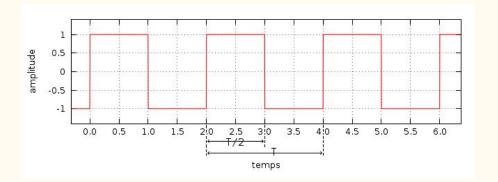


Exemples de spectres

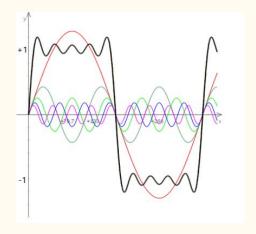
- Spectre d'un signal : amplitude des différentes harmoniques qui le composent
- Équivalence temps-fréquence

I.3. <u>OUTIL NUMÉRIQUE : SIGNAL CRÉNEAU</u>

- Soit un signal créneau tel que :



- Ré-écrit en série de Fourier : $s(t)=rac{4}{\pi}\sum_{k=0}^{\infty}rac{sin((2k+1)\omega t)}{2k+1}$



II. FILTRES LINÉAIRES

II.1. DÉFINITIONS

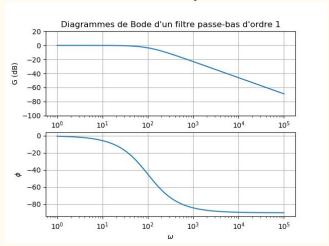
- Système linéaire, invariant par rapport au temps dont H(ω) n'est pas constante par rapport à ω. Il peut amplifier, atténuer ou déphaser chaque composante spectrale sans en ajouter (linéarité).
- <u>Ordre d'un filtre</u> : ordre de l'équation différentielle décrivant le système (en représentation temporelle)
- Gain (dB): action du filtre sur les amplitudes telle que, $G(\omega) = 20log(|H(\omega)|)$
- Phase (rad ou $^{\circ}$): action sur les phases telle que, $\phi(\omega) = arg(H(\omega))$
- Pulsation de coupure ω_c : définie par $H(\omega_c) = H_{max}/\sqrt{2}$
- Bande Passante : ensemble des ω telles que $H(\omega) > H_{max}/\sqrt{2}$
- Ces caractéristiques nous permettent de prévoir le comportement du filtre

II.2. DIAGRAMMES DE BODE

- Représentation graphique de l'action du filtre sur le signal d'entrée :
 - courbe de gain du filtre : tracé de $G(\omega)$ en échelle logarithmique
 - courbe de phase : tracé de $\varphi(\omega)$ en échelle log
- Contient toutes les caractéristiques précédentes
- Étude des comportements asymptotiques, cas du filtre RC : $H(\omega) = \frac{1}{1+jRC\omega}$

$$egin{aligned} |H(\omega)| &= rac{1}{\sqrt{1 + (RC\omega)^2}} \ &- \lim_{\omega o 0} |H(\omega)| = 1 \Rightarrow \lim_{\omega o 0} G(\omega) = 0 \ &- \lim_{\omega o +\infty} |H(\omega)| = rac{\omega_c}{\omega} \Rightarrow \lim_{\omega o +\infty} G(\omega) = -20log(\omega) + Cste \end{aligned}$$

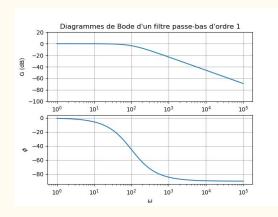
$$egin{aligned} \phi(\omega) &= arg(H(\omega)) = -arctan(\omega/\omega_c) \ &- \lim_{\omega o 0} \phi(\omega) = 0 \ &- \lim_{\omega o +\infty} \phi(\omega) = -\pi/2 \end{aligned}$$



II.3. <u>DIFFÉRENTS TYPES DE FILTRES</u>

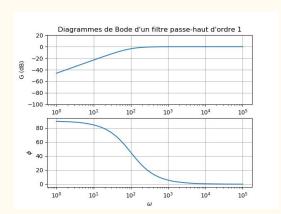
Passe-bas d'ordre 1

$$H(\omega)=rac{1}{1+jrac{\omega}{\omega_c}}H_0$$



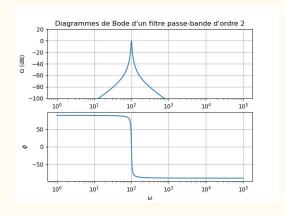
Passe-haut d'ordre 1

$$H(\omega)=rac{jrac{\omega}{\omega_c}}{1+jrac{\omega}{\omega_c}}H_0$$



Passe-bande d'ordre 2

$$H(\omega) = rac{jrac{\omega}{\omega_c Q}}{1-(rac{\omega}{\omega_c})^2+jrac{\omega}{\omega_c Q}}H_0$$



Exemple du Quartz

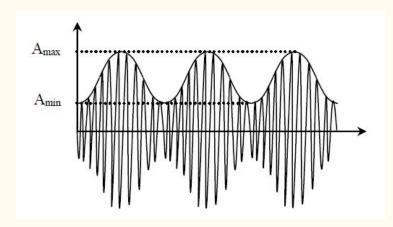
III. MODULATION D'AMPLITUDE

III.1. PRINCIPE ET DÉFINITIONS

Objectif : utiliser la meilleure propagation des ondes électromagnétiques à plus hautes fréquences pour transporter de l'information sur de longues distances

- Multiplication de deux signaux : la porteuse (de fréquence élevée) et le signal modulant (de fréquence plus basse, contenant l'information)
- Porteuse : $v_p(t) = A_p cos(\omega_p t)$
- Signal modulant : $v_m(t) = A_0 + A_m cos(\omega_m t)$ Avec $\omega_{_{
 m m}} << \omega_{_{
 m p}}$
- _ $\left[s(t) = v_p(t).\,v_m(t) = A_p cos(\omega_p t)[A_0 + A_m cos(\omega_m t)]
 ight]$
- Taux de modulation m:

$$m=rac{A_{max}-A_{min}}{A_{max}+A_{min}}=rac{A_m}{A_0}$$

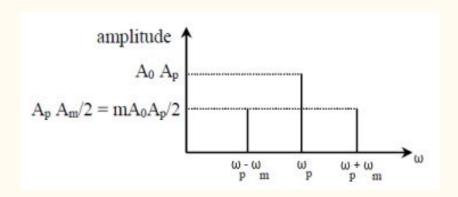


III.2. <u>SPECTRE DU SIGNAL MODULÉ</u>

- Le développement de s(t) nous donne :

$$s(t) = A_p[A_0 cos(\omega_p t) + rac{A_m}{2} cos((\omega_p + \omega_m)t) + rac{A_m}{2} cos((\omega_p - \omega_m)t)]$$

Son spectre est donc :
 (Apparition de la non-linéarité!)



III.3. <u>DÉMODULATION</u>

Objectif: récupérer l'information transmise

- Les techniques de récupération peuvent varier en fonction de la valeur de m, on s'intéresse à la démodulation synchrone : multiplication du signal modulé par le signal de la porteuse
- Le développement de $v_{dem}(t) = [v_p(t).v_m(t)].v_p(t)$ fait apparaître 5 harmoniques :

$$\begin{split} & \cdot \ \omega_1 = 0 & \cdot \ \omega_4 = 2 \omega_p + \omega_m \\ & \cdot \ \omega_2 = \omega_m & \cdot \ \omega_5 = 2 \omega_p \cdot \omega_m \\ & \cdot \ \omega_3 = 2 \omega_p \end{split}$$

- Hors $\omega_{\rm m} << \omega_{\rm p}$, donc, en filtrant $v_{\rm dem}(t)$, on peut récupérer uniquement $\omega_{\rm 2} = \omega_{\rm m}$, le signal contenant l'information !

CONCLUSION

- Signal périodique → Spectre en fréquence : harmoniques et amplitudes associées
 - →Caractérisation des signaux
 - Signaux non périodiques ? Transformée de Fourier
- Traitement de ces signaux comme action sur ces harmoniques
- Opérations non-linéaires → génération et déplacement des harmoniques

Bibliographie

- Electrocinétique, G.Rosset, Précis, Breal
- Electronique 2, F. Mannevile, J. Esquieu, Dunod
- Philippe < 3