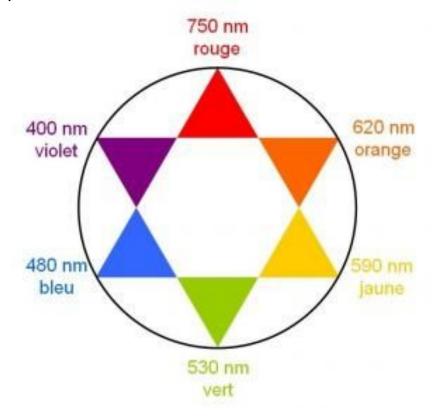
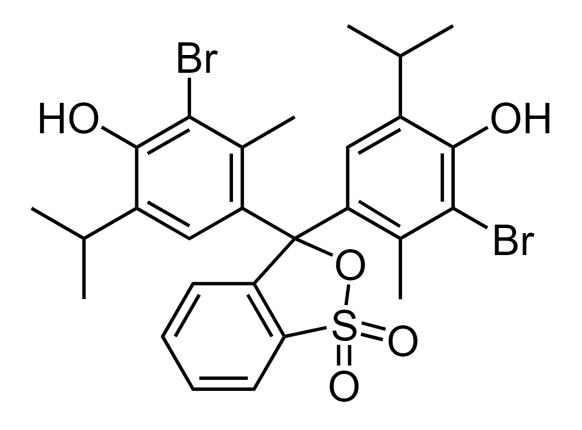
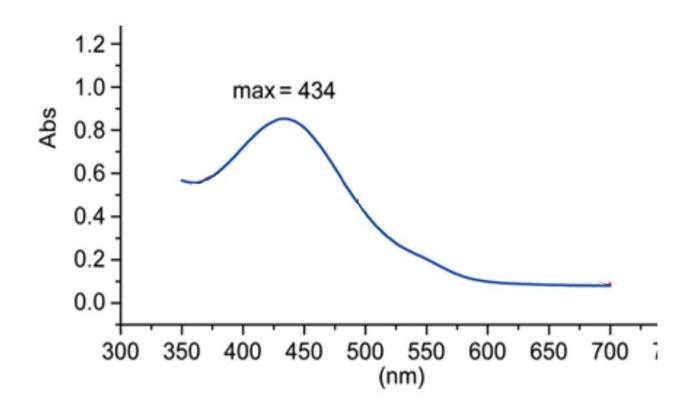
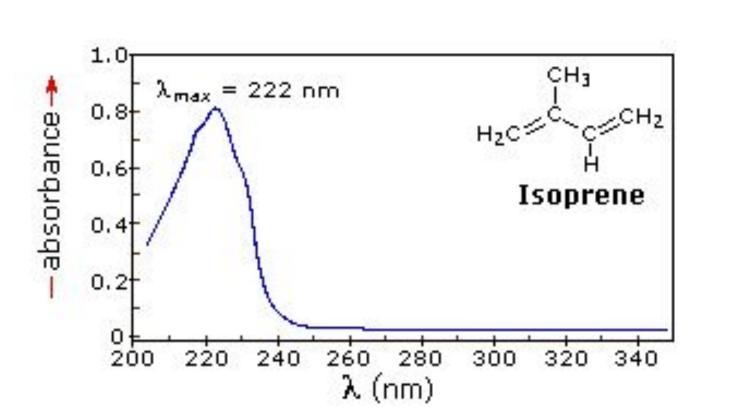

LC 8 : Caractérisations spectroscopiques en synthèse organique


I/ 1) Principe

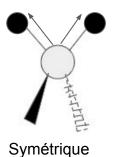

I/ 3) Spectre UV-Visible

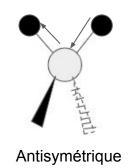

Cercle chromatique



Forme acide du bleu de bromothymol

9 liaisons doubles conjuguées Spectre UV-Visible du bleu de bromothymol (forme acide)

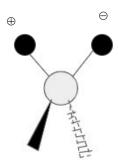


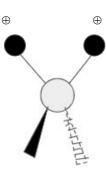


Influence des liaisons doubles conjuguées sur l'absorption

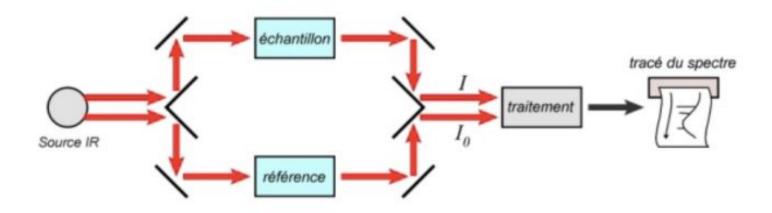

Molécule	λ absorbée (nm)	Couleur
$CH_2 = CH - CH_2 - CH = CH_2$ penta-1,4-diène $H_2C \longrightarrow CH_2$	165	incolore
$CH_2 = CH - CH = CH_2$ buta-1,3-diène $H_2C \longrightarrow CH_2$	220	incolore
$CH_2 = CH - CH = CH - CH_3$ penta-1,3-diène H_2C CH_3	220	incolore
$CH_2 = CH - CH = CH - CH = CH - CH = CH_2$ H_2C CH_2 octatétra-1,3,5,7-ène	305	incolore
naphtalène	315	incolore
anthracène	380	
1,10-diphényldécapenta-1,3,5,7,9-ène	425	
CH ₃	450	

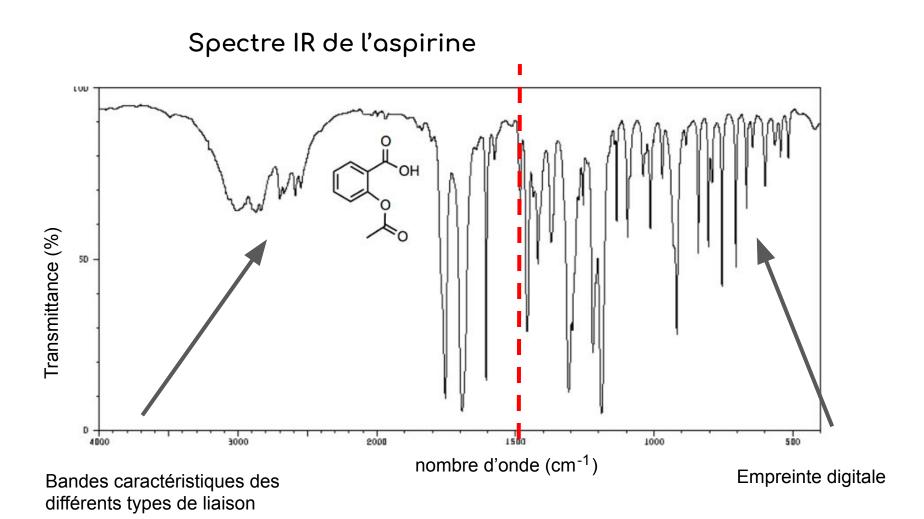
Spectroscopie IR


Vibrations de déformation



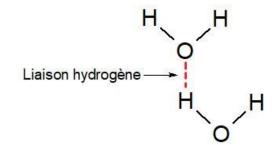
Rotation

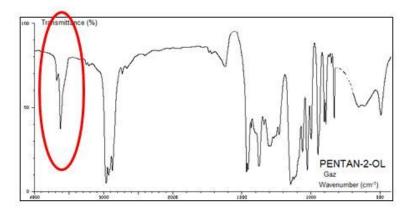



Torsion

Balancement

II/ 1) Principe



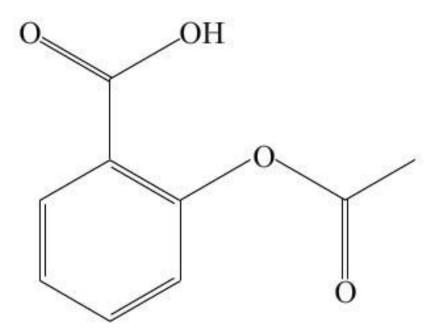


Spectroscopie IR

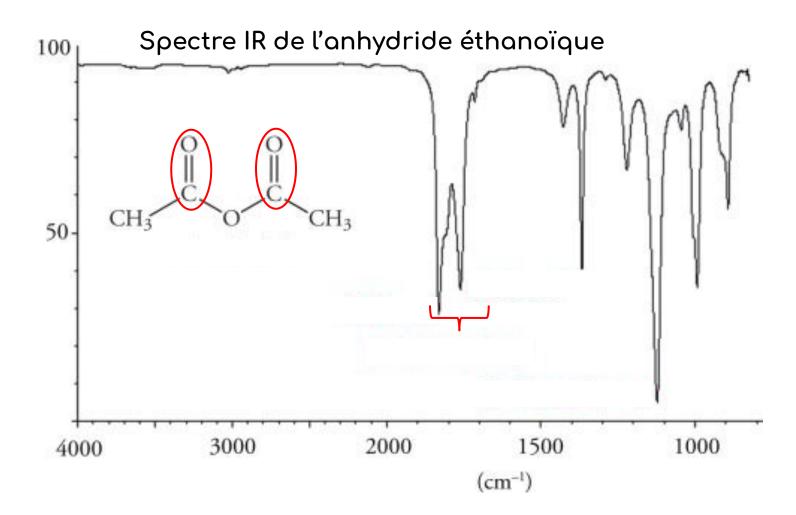
liaison	nombre d'onde (cm ⁻¹)	intensité
O-H alcool libre	3580-3670	F; fine
O-H alcool lié	3200-3400	F; large
N-H amine	3100-3500	m
N-H amide	3100-3500	F
C _{tri} -H	3000-3100	m
C _{tét} -H	2800-3000	F
C _{tri} -H aldéhyde	2750-2900	m
O-H acide carboxylique	2500-3200	F à m ; large
C=O ester	1700-1740	F
C=O amide	1650-1740	
C=O aldéhyde et cétone	1650-1730	F
C=O acide	1680-1710	F
N-H amine ou amide	1560-1640	F ou m

Cas particuliers : les liaisons hydrogènes

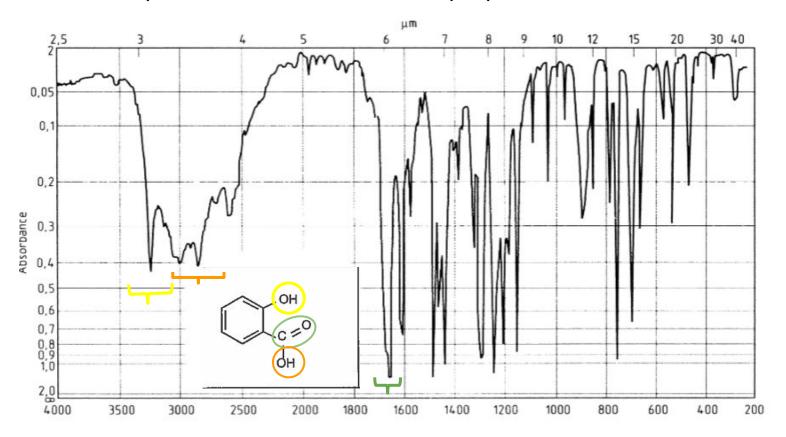
PENTAN-2-OL Liquide Wavenumber (cm⁻¹)

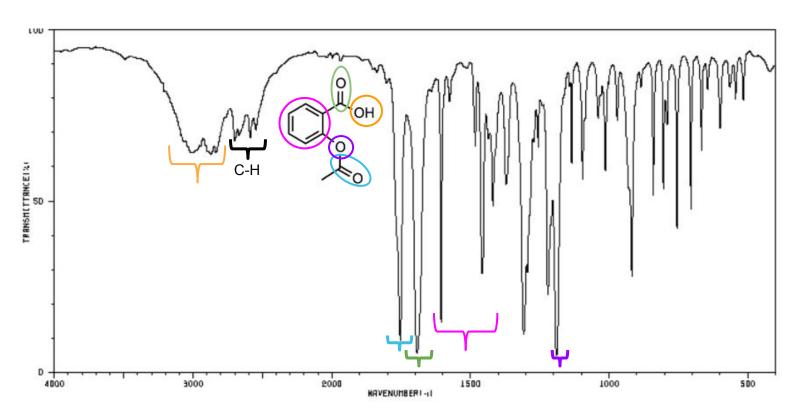

Spectre du pentan-2-ol en phase gazeuse (absence de liaisons H)

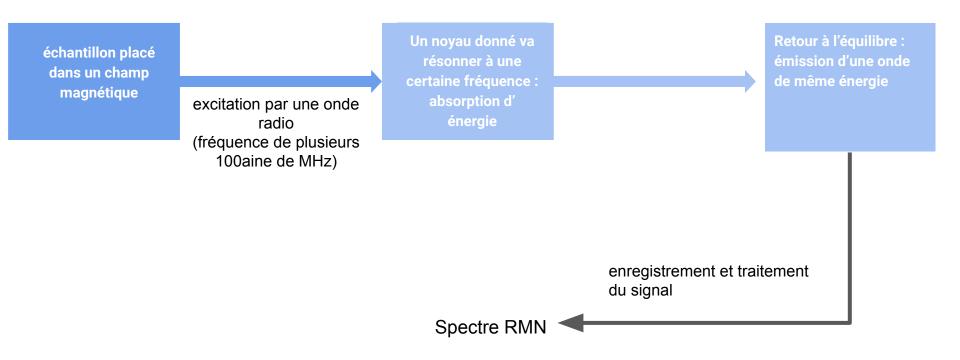
Spectre du pentan-2-ol en phase condensée (présence de liaisons H)

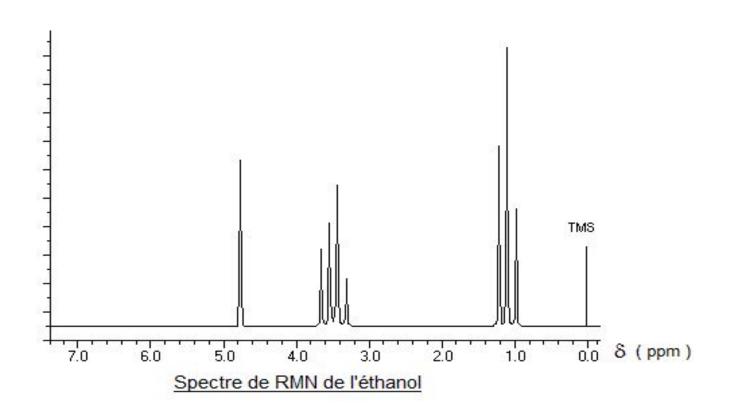

Bande fine vers 3600 cm⁻¹

Bande large vers 3300 cm⁻¹


Molécule d'aspirine


Synthèse de l'aspirine : Equation de la réaction


Spectre IR de l'acide salicylique


Spectre IR de l'aspirine

III/ 1) Principe

Spectre RMN

	Proton	δ (ppm)	Proton	δ (ppm)	Proton	δ (ppm)	
	CH ₃ -C	0,9	C-CH ₂ -C	1,3	C-CH-C	1,5	
С	H ₃ -C-O	1,4	C – CH ₂ –C (cycle)	1,5	C-CH-C-O	2,0	
С	$H_3-C=C$	1,6	C-CH ₂ -C-O	1,9	C-CH-Ar	3,0	
	CH ₃ – Ar ⁽¹⁾	2,3	$C-CH_2-C=C$	2,3	C-CH-CO-R	2,7	
CH ₃	$-CO-R^{(2)(3)}$	2,2	C-CH ₂ -Ar	2,7	C-CH-O-R	3,7	
СН	₃ -CO-Ar	2,6	C-CH ₂ -CO-R	2,4	C-CH-O-H	3,9	
CH ₃	-CO-O-R	2,0	C-CH ₂ -CO-O-R	2,2	C-CH-O-CO-R	4,8	
CH ₃ -	-CO-O-Ar	2,4	C-CH ₂ -O-R	3,4	C-CH-N	2,8	
CH ₃	-CO-N-R	2 ,0	C-CH ₂ -O-H	3,6	C-CH-Cl	4,0	
C	H ₃ -O-R	3,3	C-CH ₂ -O-Ar	4,3	C-CH-C-Cl	1,6	
(CH ₃ -OH	3,4	C-CH ₂ -O-CO-R	4,1	C-CH-Br	3,6	
CH	1 ₃ – O – Ar	3,8	C-CH ₂ -N	2,5	C-CH-C-Br	1,7	
CH ₃	-O-CO-R	3,7	$C-CH_2-C=C-CO$	2,4	C-CH-I	4,2	
	CH ₃ -N	2,3	C-CH ₂ -Cl	3,4	C-CH-C-I	1,9	
CH ₃	-C=C-CO	2,0	C-CH ₂ -C-Cl	1,7	C-CH-C≡N	2,7	
	CH ₃ – Cl	3,0	C-CH ₂ -Br	3,3		,	
CH	H ₃ -C-Cl	1,5	C-CH ₂ -C-Br	1,7			
	CH ₃ – Br	2,7	C-CH ₂ -I	3,1			
CH	H ₃ -C-Br	1,7	C-CH ₂ -C-I	1,8			
	CH ₃ -I	2,2	-CH ₂ -C≡N	2,3			
С	H ₃ -C-I	1,9	$C-CH_2-C-C=C$	1,5			
CI	H ₃ -C≡N	2,0	-CO-CH ₂ -Ar	3,8			
	Proton	δ (ppm)	Proton	δ (ppm)	Proton	δ (ppm)	
-	$-C = CH_2$	5,3	R-CO-H	9,9	-C=C-OH	11-17	

Ar-CO-H

H-CO-O

H-CO-N

9,9

8,0

8,0

R - OH

Ar - OH

R - NH -

R-CO-NH-

0,5-5,5

4,2-7,1

0,6-5 5-8,5

Méthylène

-CH₂-

Méthyne

-CH

$R-C\equiv C-H$	3,1	-CO-OH	8,5-13
		*	

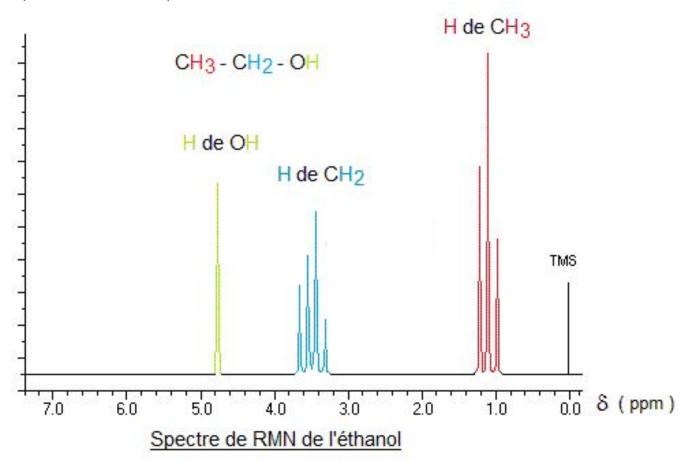
5,1

7,2

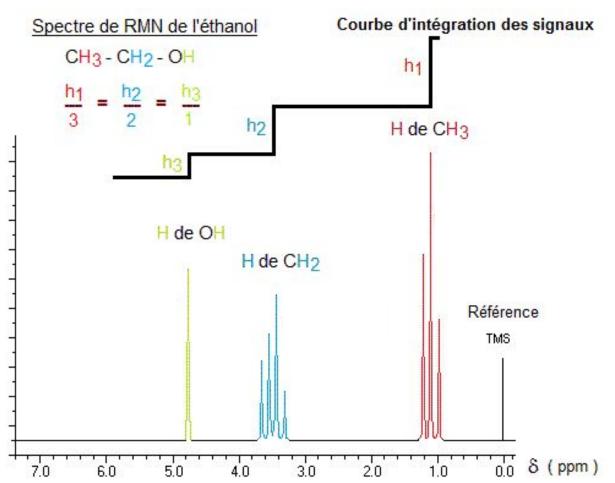
7,0-9,0

Méthyle

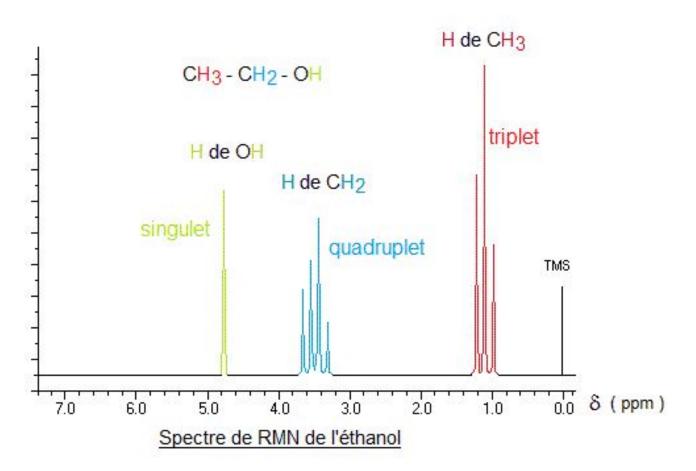
-CH₂


-C = CH -

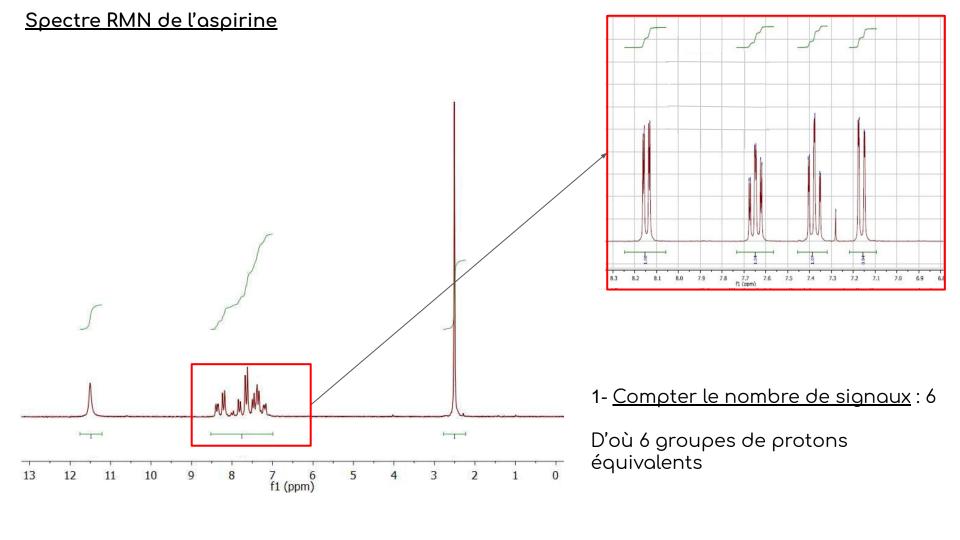
C₆H₆


Ar - H

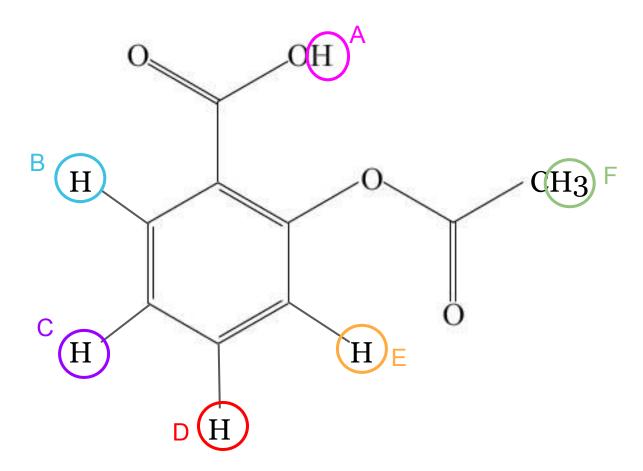
- (1) Ar : désigne un composé avec un cycle aromatique comme le benzène O ou ses dérivés.
- (2) R : désigne un radical alkyle comme les radicaux méthyle $-CH_3$, éthyle $-C_2H_5$, etc.
 (3) -CO-: désigne le groupe C=O, présent dans les aldéhydes, les cétones, les acides carboxyliques, les esters, les amides, les anhydrides d'acides, etc.

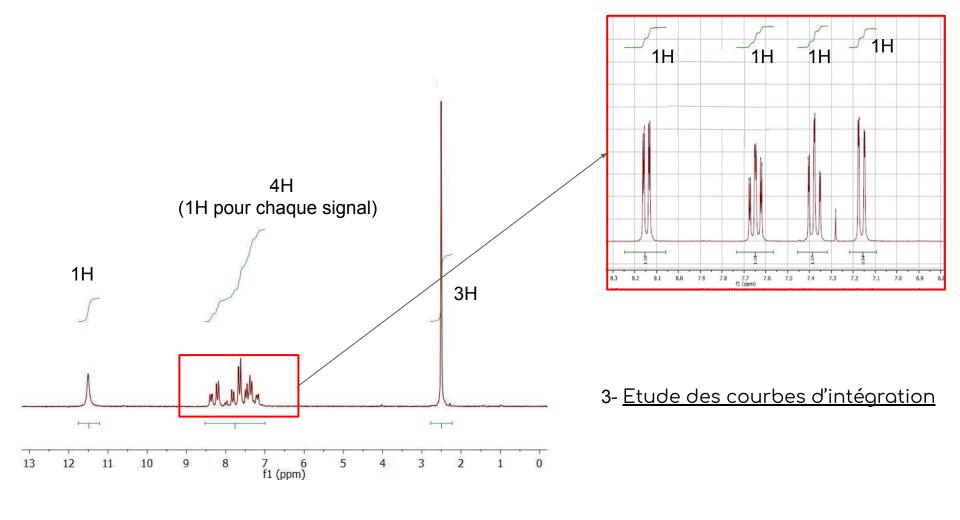

III- 2- b) Protons équivalents

III- 2- c) Courbe d'intégration



III- 2- d) Multiplicité

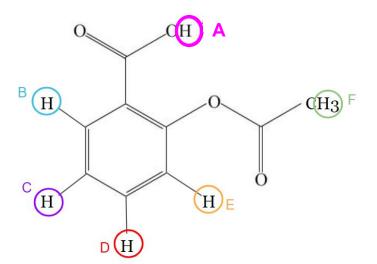



III- 2- d) Multiplicité

n protons voisins équivalents	0	1	2	3	4	5	+
Signal	Singulet	Doublet	Triplet	Quadruplet	Quintuplet	Sextuplet	Massif
Allure du massif					JWVL		
Exemples	CH ₃ - O - CH ₃	CH₃ − CHCℓ₂	CH₃ − CH₂Cℓ	CH₃ − CH₂Cℓ	CH₂Cℓ − CH₂− CH₂Cℓ	CH ₃ – CH ₂ – CH ₂ – NH ₂	/

2- Identification des protons équivalents

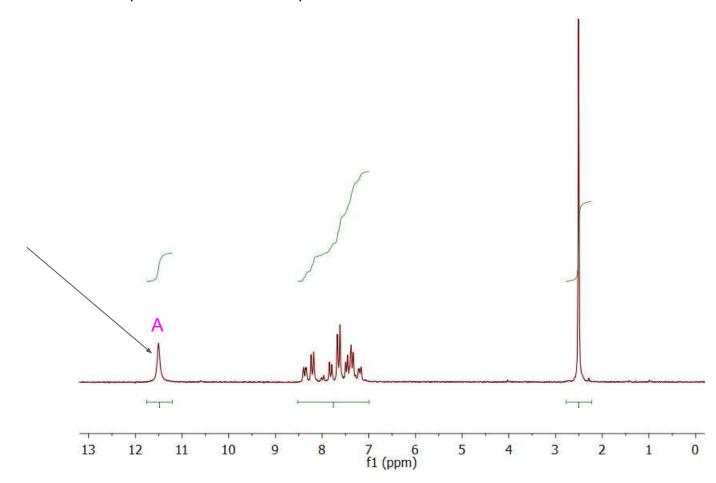
Méthyle CH ₃		Méthylène -CH ₂ -		Méthyne I CH I		
Proton	δ (ppm)	Proton	δ (ppm)	Proton	δ (ppm)	
CH ₃ -C	0,9	C-CH ₂ -C	1,3	C-CH-C	1,5	
CH ₃ -C-O	1,4	C - CH ₂ -C (cycle)	1,5	C-CH-C-O	2,0	
$CH_3-C=C$	1,6	C-CH ₂ -C-O	1,9	C-CH-Ar	3,0	
CH ₃ -Ar ⁽¹⁾	2,3	$C-CH_2-C=C$	2,3	C-CH-CO-R	2,7	
CH ₃ -CO-R ⁽²⁾⁽³⁾	2,2	C-CH ₂ -Ar	2,7	C-CH-O-R	3,7	
CH ₃ -CO-Ar	2,6	C-CH ₂ -CO-R	2,4	C-CH-O-H	3,9	
CH ₃ -CO-O-R	2,0	C-CH ₂ -CO-O-R	2,2	C-CH-O-CO-R	4,8	
CH ₃ -CO-O-Ar	2,4	C-CH ₂ -O-R	3,4	C-CH-N	2,8	
CH ₃ -CO-N-R	2 ,0	C-CH ₂ -O-H	3,6	C-CH-Cl	4,0	
CH ₃ -O-R	3,3	C-CH ₂ -O-Ar	4,3	C-CH-C-Cl	1,6	
CH ₃ -OH	3,4	C-CH ₂ -O-CO-R	4,1	C-CH-Br	3,6	
CH ₃ -O-Ar	3,8	C-CH ₂ -N	2,5	C-CH-C-Br	1,7	
CH ₃ -O-CO-R	3,7	C-CH ₂ -C=C-CO	2,4	C-CH-I	4,2	
CH ₃ -N	2,3	C-CH ₂ -Cl	3,4	C-CH-C-I	1,9	
CH ₃ -C=C-CO	2,0	C-CH ₂ -C-Cl	1,7	C-CH-C≡N	2,7	
CH ₃ -Cl	3,0	C-CH ₂ -Br	3,3			
CH ₃ -C-Cl	1,5	C-CH ₂ -C-Br	1,7			
CH ₃ – Br	2,7	C-CH ₂ -I	3,1			
CH ₃ -C-Br	1,7	C-CH ₂ -C-I	1,8			
CH ₃ -I	2,2	-CH ₂ -C≡N	2,3			
CH ₃ -C-I	1,9	C-CH ₂ -C-C=C	1,5			


Proton	δ (ppm)	Proton	δ (ppm)	Proton	δ (ppm)
$-C = CH_2$	5,3	R-CO-H	9,9	-C=C-OH	11-17
-C=CH-	5,1	Ar-CO-H	9,9	R-OH	0,5-5,5
C ₆ H ₆	7,2	H-CO-O	8,0	Ar-OH	4,2-7,1
Ar – H	7,0-9,0	H-CO-N	8,0	R-NH-	0,6-5
R-C≡C-H	3,1	-co-oh	8,5-13	R-CO-NH-	5-8,5

3,8

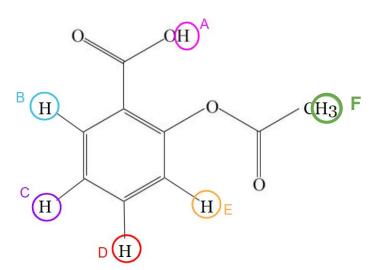
-CO-CH₂-Ar

2,0

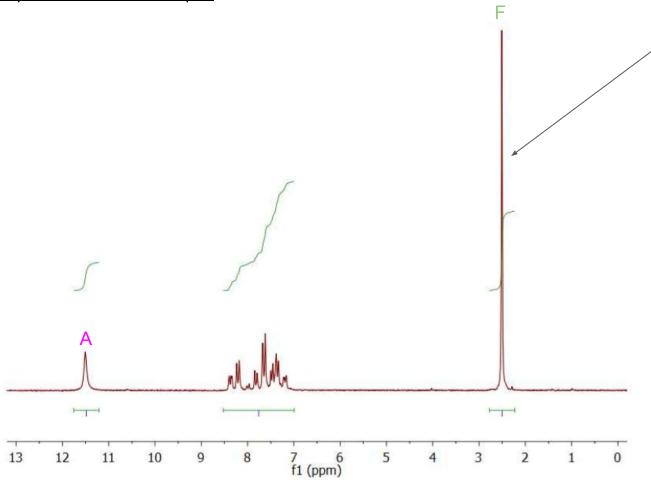

CH₃-C≡N

⁽¹⁾ Ar : désigne un composé avec un cycle aromatique comme le benzène 🔘 ou ses dérivés.

⁽²⁾ R: désigne un radical alkyle comme les radicaux méthyle $-CH_3$, éthyle $-C_2H_5$, etc.


^{(3) –} CO – : désigne le groupe C = O, présent dans les aldéhydes, les cétones, les acides carboxyliques, les esters, les amides, les anhydrides d'acides, etc.

Méthyle — CH ₃		Méthylène -CH ₂ -		Méthyne I - CH		
Proton	δ (ppm)	Proton	δ (ppm)	Proton	δ (ppm)	
CH ₃ -C	0,9	C-CH ₂ -C	1,3	C-CH-C	1,5	
CH ₃ -C-O	1,4	C - CH ₂ -C (cycle)	1,5	C-CH-C-O	2,0	
$CH_3-C=C$	1,6	C-CH ₂ -C-O	1,9	C-CH-Ar	3,0	
CH ₃ - Ar ⁽¹⁾	2,3	C-CH ₂ -C=C	2,3	C-CH-CO-R	2,7	
CH ₃ -CO-R ⁽²⁾⁽³⁾	2,2	C-CH ₂ -Ar	2,7	C-CH-O-R	3,7	
CH ₃ -CO-Ar	2,6	C-CH ₂ -CO-R	2,4	C-CH-O-H	3,9	
CH ₂ -CO-O-R	2,0	C-CH ₂ -CO-O-R	2,2	C-CH-O-CO-R	4,8	
CH ₃ -CO-O-Ar	2,4	C-CH ₂ -O-R	3,4	C-CH-N	2,8	
CH ₃ -CO-N-R	2 ,0	C-CH ₂ -O-H	3,6	C-CH-Cl	4,0	
CH ₃ -O-R	3,3	C-CH ₂ -O-Ar	4,3	C-CH-C-Cl	1,6	
CH ₃ -OH	3,4	C-CH ₂ -O-CO-R	4,1	C-CH-Br	3,6	
CH ₃ -O-Ar	3,8	C-CH ₂ -N	2,5	C-CH-C-Br	1,7	
CH ₃ -O-CO-R	3,7	C-CH ₂ -C=C-CO	2,4	C-CH-I	4,2	
CH ₃ -N	2,3	C-CH ₂ -Cl	3,4	C-CH-C-I	1,9	
CH ₃ -C=C-CO	2,0	C-CH ₂ -C-Cl	1,7	C-CH-C≡N	2,7	
CH ₃ -Cl	3,0	C-CH ₂ -Br	3,3			
CH ₃ -C-Cl	1,5	C-CH ₂ -C-Br	1,7			
CH ₃ -Br	2,7	C-CH ₂ -I	3,1			
CH ₃ -C-Br	1,7	C-CH ₂ -C-I	1,8			
CH ₃ -I	2,2	-CH ₂ -C≡N	2,3			
CH ₃ -C-I	1,9	C-CH ₂ -C-C=C	1,5			
CH ₃ −C≡N	2,0	-CO-CH ₂ -Ar	3,8			


Proton	δ (ppm)	Proton	δ (ppm)	Proton	δ (ppm)
$-C = CH_2$	5,3	R-CO-H	9,9	-C=C-OH	11-17
-C=CH-	5,1	Ar-CO-H	9,9	R-OH	0,5-5,5
C ₆ H ₆	7,2	H-CO-O	8,0	Ar-OH	4,2-7,1
Ar – H	7,0-9,0	H-CO-N	8,0	R-NH-	0,6-5
R-C≡C-H	3,1	-CO-OH	8,5-13	R-CO-NH-	5-8,5

⁽¹⁾ Ar : désigne un composé avec un cycle aromatique comme le benzène 🔘 ou ses dérivés.

⁽²⁾ R: désigne un radical alkyle comme les radicaux méthyle - CH₃, éthyle - C₂H₅, etc.

^{(3) -}CO - : désigne le groupe C=O, présent dans les aldéhydes, les cétones, les acides carboxyliques, les esters, les amides, les anhydrides d'acides, etc.

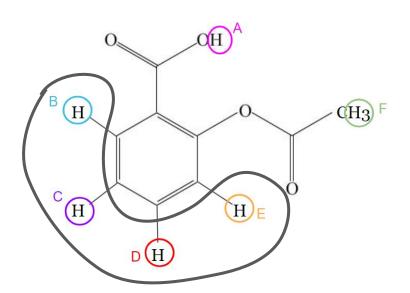
Méthyle -CH ₃		Méthylène —CH ₂ —		Méthyne I - CH		
Proton	δ (ppm)	Proton	δ (ppm)	Proton	δ (ppm)	
CH ₃ -C	0,9	C-CH ₂ -C	1,3	C-CH-C	1,5	
CH ₃ -C-O	1,4	C – CH ₂ –C (cycle)	1,5	C-CH-C-O	2,0	
CH ₃ -C=C	1,6	C-CH ₂ -C-O	1,9	C-CH-Ar	3,0	
CH ₃ - Ar ⁽¹⁾	2,3	C-CH ₂ -C=C	2,3	C-CH-CO-R	2,7	
CH ₃ -CO-R ⁽²⁾⁽³⁾	2,2	C-CH ₂ -Ar	2,7	C-CH-O-R	3,7	
CH ₃ -CO-Ar	2,6	C-CH ₂ -CO-R	2,4	C-CH-O-H	3,9	
CH ₃ -CO-O-R	2,0	C-CH ₂ -CO-O-R	2,2	C-CH-O-CO-R	4,8	
CH ₃ -CO-O-Ar	2,4	C-CH ₂ -O-R	3,4	C-CH-N	2,8	
CH ₃ -CO-N-R	2 ,0	C-CH ₂ -O-H	3,6	C-CH-Cl	4,0	
CH ₃ -O-R	3,3	C-CH ₂ -O-Ar	4,3	C-CH-C-Cl	1,6	
CH ₃ -OH	3,4	C-CH ₂ -O-CO-R	4,1	C-CH-Br	3,6	
CH ₃ -O-Ar	3,8	C-CH ₂ -N	2,5	C-CH-C-Br	1,7	
CH ₃ -O-CO-R	3,7	C-CH ₂ -C=C-CO	2,4	C-CH-I	4,2	
CH ₃ -N	2,3	C-CH ₂ -Cl	3,4	C-CH-C-I	1,9	
CH ₃ -C=C-CO	2,0	C-CH ₂ -C-Cl	1,7	C-CH-C≡N	2,7	
CH ₃ -Cl	3,0	C-CH ₂ -Br	3,3			
CH ₃ -C-Cl	1,5	C-CH ₂ -C-Br	1,7			
CH ₃ -Br	2,7	C-CH ₂ -I	3,1			
CH ₃ -C-Br	1,7	C-CH ₂ -C-I	1,8			
CH ₃ -I	2,2	-CH ₂ -C≡N	2,3			

Proton	δ (ppm)	Proton	δ (ppm)	Proton	δ (ppm)
$-C = CH_2$	5,3	R-CO-H	9,9	-C=C-OH	11-17
-C=CH-	5,1	Ar-CO-H	9,9	R-OH	0,5-5,5
C.H.	7.2	H-CO-O	8,0	Ar-OH	4,2-7,1
Ar-H	7,0-9,0	H-CO-N	8,0	R-NH-	0,6-5
R-C≡C-H	3,1	-CO-OH	8,5-13	R-CO-NH-	5-8,5

1,5

3,8

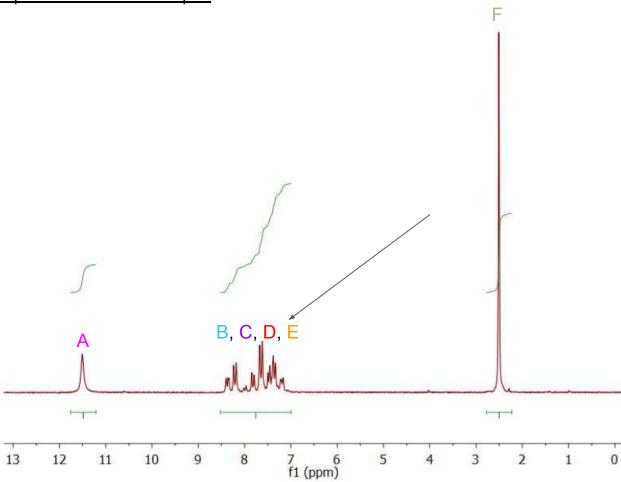
 $C-CH_2-C-C=C$

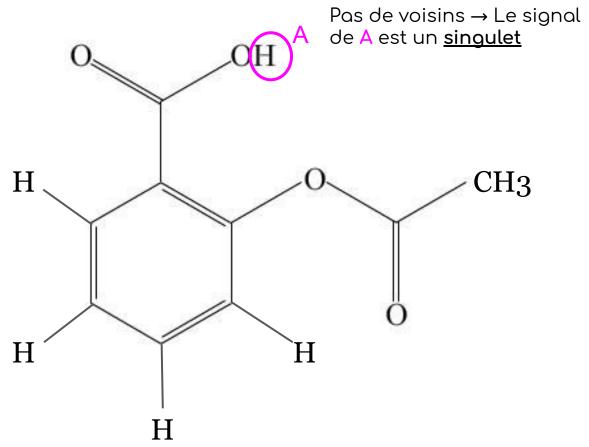

-CO-CH₂-Ar

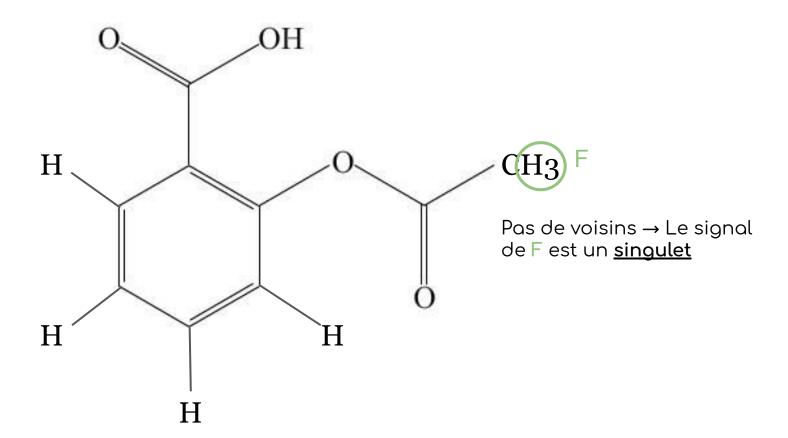
1,9

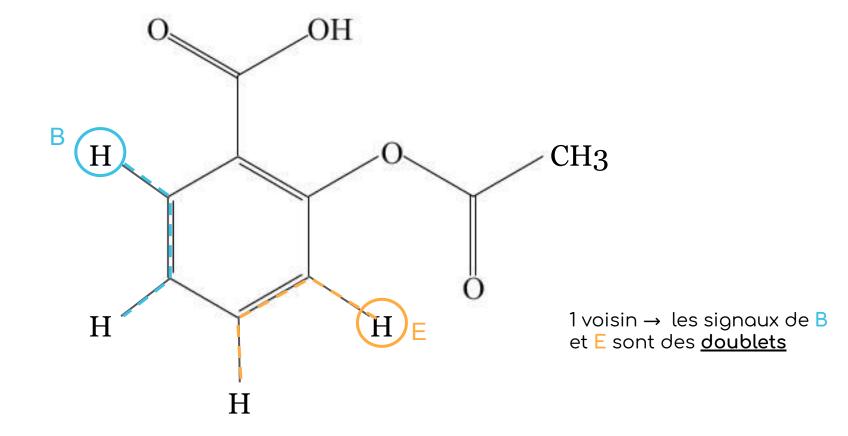
2,0

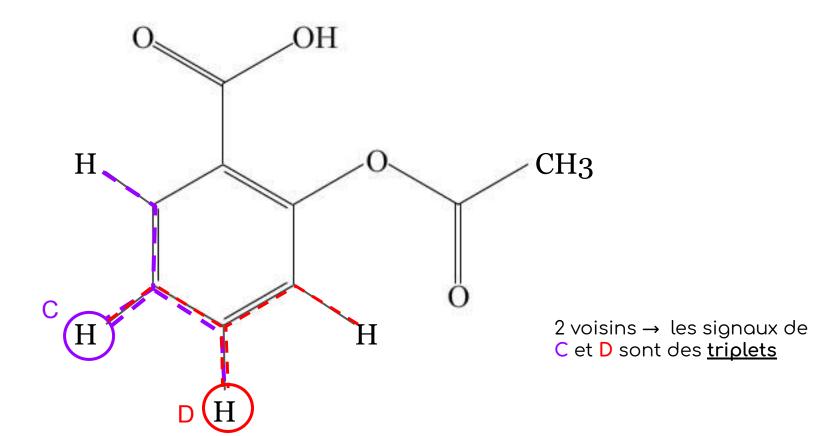
CH₃-C-I

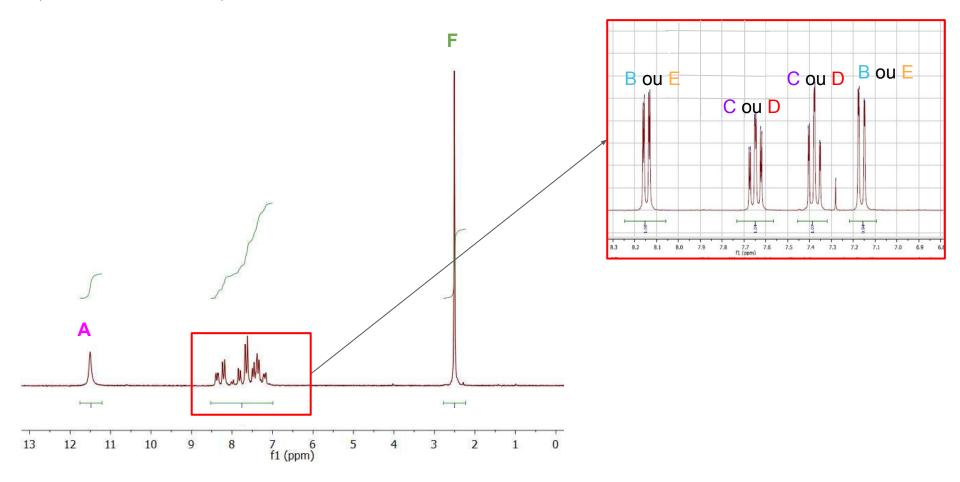

CH₃-C≡N

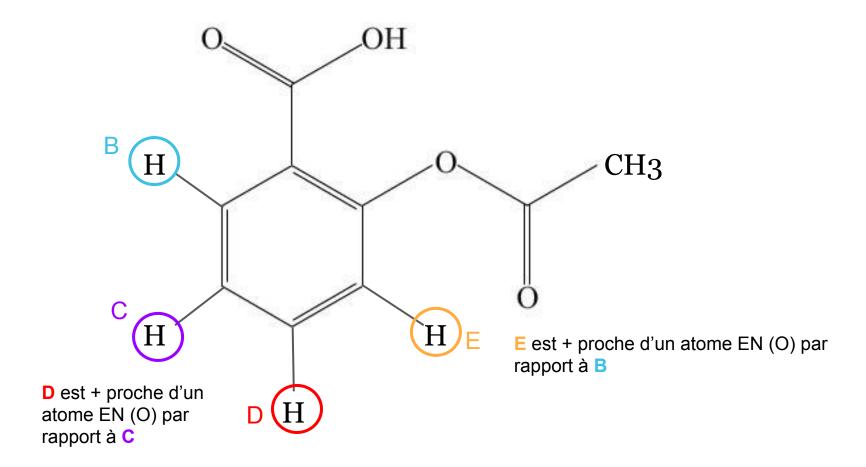


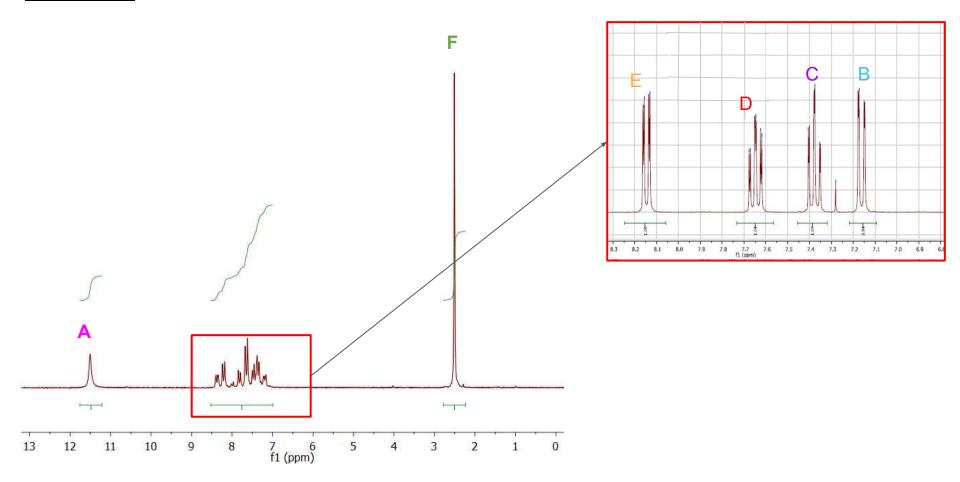

⁽¹⁾ Ar : désigne un composé avec un cycle aromatique comme le benzène 🔘 ou ses dérivés.

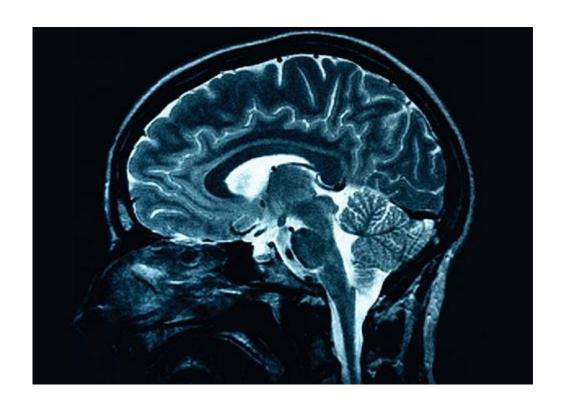

⁽²⁾ R: désigne un radical alkyle comme les radicaux méthyle -CH₃, éthyle -C₂H₅, etc.


⁽³⁾ - CO - : désigne le groupe C = O, présent dans les aldéhydes, les cétones, les acides carboxyliques, les esters, les amides, les anhydrides d'acides, etc.






Spectre RMN de l'aspirine


6- Observer l'environnement chimique

Conclusion

Conclusion

